ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
DOE-EM awards $37.5M to Vanderbilt University for nuclear cleanup support
The Department of Energy’s Office of Environmental Management announced on January 16 that it has awarded a noncompetitive financial assistance agreement worth $37.5 million to Vanderbilt University in Nashville, Tenn., to aid the department’s mission of cleaning up legacy nuclear waste.
Gerald Houghton
Nuclear Science and Engineering | Volume 11 | Number 2 | October 1961 | Pages 121-128
Technical Paper | doi.org/10.13182/NSE61-A28056
Articles are hosted by Taylor and Francis Online.
Fundamental flux vectors have been obtained for the diffusion of bubbles in heated channels by considering bubble motion in a turbulent liquid as a Markoff process. These flux vectors lead to a nonlinear partial differential equation representing the void fraction, which has been linearized for the case of small void fractions and coupled to a similar partial differential equation governing heat flow into the liquid phase. The coupled differential equations are transformed into coupled integral equations which are solved to obtain axial void fraction and temperature distributions in a heated channel. The rate of vapor production at the wall and the rate constant for bubble growth have been calculated from experimental data on void fraction distributions at constant uniform flux. The model predicts the correct shape for the void fraction distribution curve as well as providing a plausible explanation of burnout phenomena in terms of the bubble slip velocity.