ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
DOE-EM awards $37.5M to Vanderbilt University for nuclear cleanup support
The Department of Energy’s Office of Environmental Management announced on January 16 that it has awarded a noncompetitive financial assistance agreement worth $37.5 million to Vanderbilt University in Nashville, Tenn., to aid the department’s mission of cleaning up legacy nuclear waste.
Ernest E. Hill, Frederick J. Shon
Nuclear Science and Engineering | Volume 11 | Number 2 | October 1961 | Pages 105-110
Technical Paper | doi.org/10.13182/NSE61-A28053
Articles are hosted by Taylor and Francis Online.
This paper presents a fuel cycle program for an intermediate power research reactor utilizing fully enriched MTR type fuel elements. The fuel cycle program is considered at equilibrium after many cycles have past. The program consists of shifting elements from positions of high importance outward to positions of low importance through several paths. The paths are staggered so that only the elements in one path are shifted at the conclusion of a cycle, and only one element is replaced. The method of calculating the fuel remaining in each element is shown utilizing a fractional burn-up factor for each position. Sample calculations are shown for the LPTR with 23 standard elements in the core and a desired burn-up of 15%. A method is proposed to obtain such an equilibrium condition starting with an initial loading of fuel elements having nearly equal fuel loading.