ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Molten salt research is focus of ANS local section presentation
The American Nuclear Society’s Chicago–Great Lakes Local Section hosted a presentation on February 27 on developments at the molten salt research reactor at Abilene Christian University’s Nuclear Energy Experimental Testing (NEXT) Lab.
A recording of the presentation is available on the ANS website.
Ernest E. Hill, Frederick J. Shon
Nuclear Science and Engineering | Volume 11 | Number 2 | October 1961 | Pages 105-110
Technical Paper | doi.org/10.13182/NSE61-A28053
Articles are hosted by Taylor and Francis Online.
This paper presents a fuel cycle program for an intermediate power research reactor utilizing fully enriched MTR type fuel elements. The fuel cycle program is considered at equilibrium after many cycles have past. The program consists of shifting elements from positions of high importance outward to positions of low importance through several paths. The paths are staggered so that only the elements in one path are shifted at the conclusion of a cycle, and only one element is replaced. The method of calculating the fuel remaining in each element is shown utilizing a fractional burn-up factor for each position. Sample calculations are shown for the LPTR with 23 standard elements in the core and a desired burn-up of 15%. A method is proposed to obtain such an equilibrium condition starting with an initial loading of fuel elements having nearly equal fuel loading.