ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Biden executive order to facilitate AI data center power
As demand for artificial intelligence and data centers grows, President Biden issued an executive order yesterday aimed to ensure clean-energy power supply for the technology.
M. M. R. Williams
Nuclear Science and Engineering | Volume 160 | Number 2 | October 2008 | Pages 253-260
Technical Paper | doi.org/10.13182/NSE160-253
Articles are hosted by Taylor and Francis Online.
The resonance integrals and associated temperature coefficients in a mixture of graphite and randomly dispersed grains of ThO2 are calculated. Two methods of dealing with the random distribution of grains are used. The first is one developed by Lane, Nordheim, and Sampson, which is based upon a random Dancoff factor, and the second uses the dichotomic Markov process. The numerical results are compared for a range of grain sizes and ranges of temperature. The differences in the two methods do not exceed 4% for resonance integrals and 2.5% for temperature coefficients. Bearing in mind the radically different stochastic procedures involved, it is remarkable and useful to know that the results are so insensitive to the stochastic model used. In addition we give a measure of the variance in the results.