ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
PR: American Nuclear Society welcomes Senate confirmation of Ted Garrish as the DOE’s nuclear energy secretary
Washington, D.C. — The American Nuclear Society (ANS) applauds the U.S. Senate's confirmation of Theodore “Ted” Garrish as Assistant Secretary for Nuclear Energy at the U.S. Department of Energy (DOE).
“On behalf of over 11,000 professionals in the fields of nuclear science and technology, the American Nuclear Society congratulates Mr. Garrish on being confirmed by the Senate to once again lead the DOE Office of Nuclear Energy,” said ANS President H.M. "Hash" Hashemian.
Otasowie Osifo, Staffan Jacobsson Svärd, Ane Håkansson, Christofer Willman, Anders Bäcklin, Tobias Lundqvist
Nuclear Science and Engineering | Volume 160 | Number 1 | September 2008 | Pages 129-143
Technical Note | doi.org/10.13182/NSE160-129TN
Articles are hosted by Taylor and Francis Online.
Decay heat is an important design parameter at the future Swedish spent nuclear fuel repository. It will be calculated for each fuel assembly using dedicated depletion codes, based on the operator-declared irradiation history. However, experimental verification of the calculated decay heat is also anticipated. Such verification may be obtained by gamma scanning using the established correlation between the decay heat and the emitted gamma-ray intensity from 137Cs. In this procedure, the correctness of the operator-declared fuel parameters can be verified.Recent achievements of the gamma-scanning technique include the development of a dedicated spectroscopic data-acquisition system and the use of an advanced calorimeter for calibration. Using this system, the operator-declared burnup and cooling time of 31 pressurized water reactor fuel assemblies was verified experimentally to within 2.2% (1) and 1.9% (1), respectively. The measured decay heat agreed with calorimetric data within 2.3% (1), whereby the calculated decay heat was verified within 2.3% (1). The measuring time per fuel assembly was ~15 min.In case reliable operator-declared data are not available, the gamma-scanning technique also provides a means to independently measure the decay heat. The results obtained in this procedure agreed with calorimetric data within 2.7% (1).