ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
Guohui Zhang, Jiaguo Zhang, Rongtai Cao, Li'an Guo, Jinxiang Chen, Yu. M. Gledenov, M. V. Sedysheva, G. Khuukhenkhuu, P. J. Szalanski
Nuclear Science and Engineering | Volume 160 | Number 1 | September 2008 | Pages 123-128
Technical Paper | doi.org/10.13182/NSE160-123
Articles are hosted by Taylor and Francis Online.
By using a twin-gridded ionization chamber, differential cross-section data of the 64Zn(n,)61Ni reaction were measured at neutron energies of 2.54, 4.00, and 5.50 MeV. The experiment was performed at the 4.5-MV Van de Graaff accelerator of the Institute of Heavy Ion Physics, Peking University, China. Monoenergetic neutrons of 2.54 MeV were produced through the T(p,n)3He reaction with a solid Ti-T target, and those of 4.00 and 5.50 MeV were produced through the D(d,n)3He reaction with a deuterium gas target. The absolute neutron flux was determined through the 238U(n,f) reaction and a BF3 long counter was used as the neutron flux monitor. Results of the present work are combined with our previous data between 5.0 and 6.5 MeV and compared with other measurements and evaluations.