ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
Farzad Rahnema, Steven Douglass, Benoit Forget
Nuclear Science and Engineering | Volume 160 | Number 1 | September 2008 | Pages 41-58
Technical Paper | doi.org/10.13182/NSE160-41
Articles are hosted by Taylor and Francis Online.
A generalization of multigroup energy condensation theory has been developed. The new method generates a solution within the few-group framework that exhibits the energy spectrum characteristic of a many-group transport solution, without the computational time usually associated with such solutions. This is accomplished by expanding the energy dependence of the angular flux in a set of general orthogonal functions. The expansion leads to a set of equations for the angular flux moments in the few-group framework. The zeroth moment generates the standard few-group equation while the higher-moment equations generate the detailed spectral resolution within the few-group structure. It is shown that by carefully choosing the orthogonal function set (e.g., Legendre polynomials), the higher-moment equations are only coupled to the zeroth-order equation and not to each other. The decoupling makes the new method highly competitive with the standard few-group method since the computation time associated with determining the higher moments becomes negligible as a result of the decoupling. The method is verified in several one-dimensional benchmark problems typical of boiling water reactor configurations with mild to high heterogeneity.