ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
S. Santandrea, R. Sanchez, P. Mosca
Nuclear Science and Engineering | Volume 160 | Number 1 | September 2008 | Pages 23-40
Technical Paper | doi.org/10.13182/NSE07-69
Articles are hosted by Taylor and Francis Online.
The method of characteristics (MOC) in unstructured meshes has become a standard for reactor physics applications. One of the major drawbacks of the MOC is the difficulty to implement higher-order integration schemes to improve spatial convergence. In this paper we present a high-order MOC spatial discretization that uses linear interpolation on surface values for the collision source. This conservative linear surface (CLS) scheme exhibits parabolic convergence with the mesh size but lacks positivity. Numerical results for the well-known Stepanek benchmark and for more realistic boiling water reactor assemblies show CLS faster convergence over the standard step characteristics scheme. A generalization of the synthetic DPN acceleration scheme provides an efficient method to accelerate the internal transport iterations.