ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
Hany S. Abdel-Khalik, Paul J. Turinsky, Matthew A. Jessee
Nuclear Science and Engineering | Volume 159 | Number 3 | July 2008 | Pages 256-272
Technical Paper | doi.org/10.13182/NSE159-256
Articles are hosted by Taylor and Francis Online.
This paper introduces the concepts and derives the mathematical theory of efficient subspace methods (ESMs) applied to the simulation of large-scale complex models, of which nuclear reactor simulation will serve as a test basis. ESMs are intended to advance the capabilities of predictive simulation to meet the functional requirements of future energy system simulation and overcome the inadequacies of current design methods. Some of the inadequacies addressed by ESM include lack of rigorous approach to perform comprehensive validation of the multitudes of models and input data used in the design calculations and lack of robust mathematical approaches to enhance fidelity of existing and advanced computational codes. To accomplish these tasks, the computational tools must be capable of performing the following three applications with both accuracy and efficiency: (a) sensitivity analysis of key system attributes with respect to various input data; (b) uncertainty quantification for key system attributes; and (c) adaptive simulation, also known as data assimilation, for adapting existing models based on the assimilated body of experimental information to achieve the best possible prediction accuracy. These three applications, involving large-scale computational models, are now considered computationally infeasible if both the input data and key system attributes or experimental information fields are large. This paper will develop the mathematical theory of ESM-based algorithms for these three applications. The treatment in this paper is based on linearized approximation of the associated computational models. Extension to higher-order approximations represents the focus of our ongoing research.