ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
C. D. Bowman, D. C. Bowman, T. Hill, J. Long, A. P. Tonchev, W. Tornow, F. Trouw, Sven Vogel, R. L. Walter, S. Wender, V. Yuan
Nuclear Science and Engineering | Volume 159 | Number 2 | June 2008 | Pages 182-198
Technical Paper | doi.org/10.13182/NSE159-182
Articles are hosted by Taylor and Francis Online.
High-resolution Bragg-edge transmission measurements were conducted on granular as well as solid samples of graphite to understand the basis for a bulk measurement of the diffusion length 24% larger than predicted by MCNP5 for bulk reactor-grade graphite. High resolution enabled a measurement of the total diffraction cross section from 1 to 200 meV. This was subtracted from the total cross section to find the inelastic cross section in the same energy range. Small-angle scattering, which has been thought to contribute to the total cross section in the region of the lowest Bragg edge, is shown not to be present in our measurement or in those of others claiming to find it. Instead, neutron total reflection from the surface of graphite microcrystals is shown to contribute to the cross section at low energies. Reactor-grade graphite is shown to have an inelastic scattering cross section over most of the energy range larger by at least 10 than the nearly perfect crystal structure of pyrolytic graphite. The ratio of inelastic scattering to diffraction at 25 meV for our graphite is inferred to be twice as large as that of graphite manufactured 50 yr ago, and we believe that our larger diffusion coefficient is rooted in this difference. The distortions in the microcrystalline structure introduced in the manufacturing of the graphite studied here at 24°C are found to be equivalent to the uncertainty in atom positions seen in heating perfect crystal graphite to a temperature of ~1800°C.