ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
Hangbok Choi, Chang Je Park
Nuclear Science and Engineering | Volume 159 | Number 2 | June 2008 | Pages 153-168
Technical Paper | doi.org/10.13182/NSE159-153
Articles are hosted by Taylor and Francis Online.
Benchmark calculations of Canada deuterium uranium (CANDU) reactor physics design and analysis codes have been performed for a lattice code WIMS-AECL, a supercell code DRAGON, and a core analysis code RFSP by using the physics measurement data of Wolsong nuclear power plants. In this study, the lattice and reactivity device models were examined based on Wolsong-2 measurement data for the criticality and reactivity device worth. Sensitivity calculations were also performed for the number of energy groups and the cross-section library. Using the lattice and reactivity device models obtained from the Wolsong-2 calculation, the benchmark calculations were extended to the Wolsong-3 and Wolsong-4 plants. Compared to a previous study, this study showed that the results of the criticality and reactivity device worth calculations were improved when the material data were updated and the exact two-group cross sections were used. For the three nuclear power plants, the calculated core reactivity was within 0.2% k of criticality. The zone controller unit reactivity worth was estimated to have a maximum error of ~8%. The total reactivity worth of other reactivity control devices was consistent with the measurement data within 13%. The root-mean-square error of the flux distribution calculation was <12% when compared with flux scans performed during Phase B physics tests. In conclusion, the CANDU physics design and analysis codes used in this benchmark study predicted the physics parameters within the allowed uncertainty level of the measurement data.