ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Biden executive order to facilitate AI data center power
As demand for artificial intelligence and data centers grows, President Biden issued an executive order yesterday aimed to ensure clean-energy power supply for the technology.
A. G. Buchan, C. C. Pain, M. D. Eaton, A. J. H. Goddard, R. P. Smedley-Stevenson
Nuclear Science and Engineering | Volume 159 | Number 2 | June 2008 | Pages 127-152
Technical Paper | doi.org/10.13182/NSE159-127
Articles are hosted by Taylor and Francis Online.
This paper presents two new methods for discretizing the angular dimension of the Boltzmann transport equation that describes the transport of neutral particles such as neutrons and photons. Our methods represent the direction of particle travel using linear and quadratic varying approximations over a quadrilateral partitioning of the unit sphere's surface (which is used to represent a particle's direction), which is similar to the approximations provided by a finite element expansion. However, our approximations are generated using a second generation spherical wavelet technique. This method generates hierarchical sets of compactly supported basis functions that are important properties for our future work in applying adaptive resolution in the transport equation's angular dimension. These new wavelet methods are applied to five monoenergetic transport problems to demonstrate their capabilities to efficiently represent the angular flux. Particular emphasis is placed on their ability to approximate particle transport in problems involving extreme material cross sections, namely, particle streaming through voids and their transport through highly scattering media. We are able to show that the methods work well against the common methods SN and PN when used within established radiation transport codes.