ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
Edward W. Larsen, Jinan Yang
Nuclear Science and Engineering | Volume 159 | Number 2 | June 2008 | Pages 107-126
Technical Paper | doi.org/10.13182/NSE07-92
Articles are hosted by Taylor and Francis Online.
In Monte Carlo simulations of k-eigenvalue problems for optically thick fissile systems with a high dominance ratio, the eigenfunction is often poorly estimated because of the undersampling of the fission source. Although undersampling can be addressed by sufficiently increasing the number of particles per cycle, this can be impractical in difficult problems. Here, we present a new functional Monte Carlo (FMC) method that minimizes this difficulty for many problems and yields a more accurate estimate of the k-eigenvalue. In the FMC method, standard Monte Carlo techniques do not directly estimate the eigenfunction; instead, they directly estimate certain nonlinear functionals that depend only weakly on the eigenfunction. The functionals are then used to more accurately estimate the k-eigenfunction and the eigenvalue. Like standard Monte Carlo methods, the FMC method has only statistical errors that limit to zero as the number of particles per cycle and the number of cycles become large. We provide numerical results that illustrate the advantages and limitations of the new method.