ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
Latest News
ANS joins others in seeking to discuss SNF/HLW impasse
The American Nuclear Society joined seven other organizations to send a letter to Energy Secretary Christopher Wright on July 8, asking to meet with him to discuss “the restoration of a highly functioning program to meet DOE’s legal responsibility to manage and dispose of the nation’s commercial and legacy defense spent nuclear fuel (SNF) and high-level radioactive waste (HLW).”
Edward W. Larsen, Jinan Yang
Nuclear Science and Engineering | Volume 159 | Number 2 | June 2008 | Pages 107-126
Technical Paper | doi.org/10.13182/NSE07-92
Articles are hosted by Taylor and Francis Online.
In Monte Carlo simulations of k-eigenvalue problems for optically thick fissile systems with a high dominance ratio, the eigenfunction is often poorly estimated because of the undersampling of the fission source. Although undersampling can be addressed by sufficiently increasing the number of particles per cycle, this can be impractical in difficult problems. Here, we present a new functional Monte Carlo (FMC) method that minimizes this difficulty for many problems and yields a more accurate estimate of the k-eigenvalue. In the FMC method, standard Monte Carlo techniques do not directly estimate the eigenfunction; instead, they directly estimate certain nonlinear functionals that depend only weakly on the eigenfunction. The functionals are then used to more accurately estimate the k-eigenfunction and the eigenvalue. Like standard Monte Carlo methods, the FMC method has only statistical errors that limit to zero as the number of particles per cycle and the number of cycles become large. We provide numerical results that illustrate the advantages and limitations of the new method.