ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
G. Kessler
Nuclear Science and Engineering | Volume 159 | Number 1 | May 2008 | Pages 56-82
Technical Paper | doi.org/10.13182/NSE159-56
Articles are hosted by Taylor and Francis Online.
The three most important americium isotopes, 241Am, 242mAm, and 243Am originate in the nuclear fuel of pressurized water reactors (PWRs), fast reactors (FRs), or accelerator-driven systems (ADSs) in a ratio of 241Am/243Am between ~0.45/0.55 to ~0.85/0.15. The content of 242mAm in the spent fuel of PWRs, FRs, and ADSs is relatively small and varies between 0.08 and 4.5%. Only by dedicated breeding in 241Am fuel and blanket assemblies could this 242mAm content be increased to ~7%. Only the isotope 241Am has a relatively high alpha-particle heat production whereas the isotopes 242mAm and 243Am have a relatively small alpha-particle heat production. All three americium isotopes are spontaneous fission neutron emitters.In this paper the different isotopic compositions of the three americium isotopes, 241Am, 242mAm, and 243Am are assembled for a number of fuel cycle strategies for PWRs, FRs and ADSs. Then, the critical masses, spontaneous fission neutron sources, and alpha-particle heat power of these different americium compositions are calculated. In a preignition analysis for gun systems and implosion systems, it is shown that only the implosion system would be applicable to the considered americium isotopic compositions. A subsequent thermal analysis with assumptions for the geometry and choice of materials of so-called hypothetical nuclear explosive devices (HNEDs) shows that the high alpha-particle heat power in the fissile reactor americium part would lead to such high temperatures that the surrounding chemical high explosives would melt and self-explode, and the americium metal would melt.Such HNEDs on the basis of reactor americium as fissile material would be technically unfeasible.