ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
Jeffery D. Densmore, Thomas M. Evans, Michael W. Buksas
Nuclear Science and Engineering | Volume 159 | Number 1 | May 2008 | Pages 1-22
Technical Paper | doi.org/10.13182/NSE159-01
Articles are hosted by Taylor and Francis Online.
Discrete Diffusion Monte Carlo (DDMC) is a technique for increasing the efficiency of Monte Carlo simulations in diffusive media. If standard Monte Carlo is employed in such a regime, particle histories will consist of many small steps, a situation that results in a computationally inefficient calculation. In DDMC, particles take discrete steps between spatial cells according to a discretized diffusion equation. Each discrete step replaces many smaller Monte Carlo steps, thus increasing the efficiency of the simulation. In addition, because DDMC is based on the diffusion approximation, it should yield accurate solutions if used judiciously. In this paper, we present a new DDMC method for linear, steady-state radiation transport on adaptive-refinement meshes in two-dimensional Cartesian geometry. Adaptive-refinement meshes are characterized by local refinement such that a spatial cell may have multiple neighboring cells across each face. We specifically examine the cases of (a) a regular mesh structure without refinement, (b) a refined mesh structure where neighboring cells differ in refinement, and (c) a boundary mesh structure representing the interface between a diffusive region (where DDMC is used) and a nondiffusive region (where standard Monte Carlo is employed). With numerical examples, we demonstrate that our new DDMC technique is accurate and can provide efficiency gains of two orders of magnitude over standard Monte Carlo.