ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
Renato Yoichi Ribeiro Kuramoto, Adimir dos Santos, Rogario Jerez, Ricardo Diniz
Nuclear Science and Engineering | Volume 158 | Number 3 | March 2008 | Pages 272-283
Technical Paper | doi.org/10.13182/NSE06-120
Articles are hosted by Taylor and Francis Online.
A new method for absolute measurement of the effective delayed neutron fraction eff based on Rossi- experiments and the two-region model was developed at the IPEN/MB-01 Research Reactor facility. In contrast with other techniques such as the slope method, the Nelson-number method, and the 252Cf-source method, the main advantage of this new methodology is to obtain the effective delayed neutron parameters in a purely experimental way, eliminating all parameters that are difficult to measure or calculate. In this way, Rossi- experiments for validation of this method were performed at the IPEN/MB-01 facility, and with the use of the present approach, eff was measured with a 1.46% uncertainty. In addition, the prompt neutron generation time and other parameters were also obtained in an absolute experimental way. In general, the final results agree well with values from frequency analysis experiments. Comparison of theory and experiment reveals that JENDL-3.3 shows deviation for eff lower than 1%, which meets the desired accuracy for the theoretical determination of this parameter. This work supports the reduction of the 235U thermal yield, as proposed by Okajima and Sakurai.