ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Biden executive order to facilitate AI data center power
As demand for artificial intelligence and data centers grows, President Biden issued an executive order yesterday aimed to ensure clean-energy power supply for the technology.
Hoai Nam Tran, Yasuyoshi Kato, Yasushi Muto
Nuclear Science and Engineering | Volume 158 | Number 3 | March 2008 | Pages 264-271
Technical Paper | doi.org/10.13182/NSE08-A2752
Articles are hosted by Taylor and Francis Online.
A burnable poison (BP) loading principle has been proposed for once-through-then-out refueling of a high-temperature gas-cooled reactor (HTGR) core with pebble fuel. The principle holds that an axial core power peaking factor can be minimized when k of the fuel pebbles is kept constant during their axial movement from the top to the bottom of the core by adding BP. This principle has been confirmed numerically using B4C with 10B enrichment of 90% and Gd2O3 with natural content as BP. Spherical particles of B4C and Gd2O3 are distributed uniformly in the fuel pebble. The respective optimal radius and number of BP particles are 90 m and 1650 for B4C and 950 m and 16 for Gd2O3. Through addition of B4C and Gd2O3, the power peaking factors are reduced from 4.4 to 1.61 and 1.64, respectively. Burnup reactivity swings are reduced from 38% to about 2% in both BP loadings. Because of reduction of the power peaking factors, the maximum fuel temperatures are respectively lower than the maximum permissible values of 1250 and 1600°C for normal operation and depressurization accident.