ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Reuben T. Sorensen, John C. Lee
Nuclear Science and Engineering | Volume 158 | Number 3 | March 2008 | Pages 213-230
Technical Paper | doi.org/10.13182/NSE08-A2749
Articles are hosted by Taylor and Francis Online.
We have developed a light water reactor (LWR) equilibrium cycle search algorithm that is similar to the REBUS-3 fast reactor methodology but with depletion capabilities typically employed for LWR analysis. Our LWR methodology projects the original coupled nonlinear isotopic balance equations to a series of equations that are piecewise linear in time. Iterations are performed on microscopic reaction rates until the linearized isotopic balance equations yield an ultimate equilibrium state. We further reduce the computational burden associated with LWR analysis by approximating global depletion calculations with assembly-level, collision probability calculations performed by the CASMO-3 code. We demonstrate the benefits of our equilibrium cycle methodology by calculating the true equilibrium Pu inventory of two configurations: a heterogeneous assembly configuration that contains both low enriched UO2 and mixed oxide (MOX) fuel pins and a homogeneous configuration comprising a 2 × 2 colorset arrangement of MOX and low enriched UO2 assemblies. For each configuration our methodology yields a true equilibrium Pu inventory with only 12 CASMO-3 lattice physics calculations. As a validation, an inventory extrapolation technique is used to arrive at a quasi-equilibrium cycle for both LWR configurations. The extrapolated technique yields a similar Pu inventory and isotopic composition but requires 65 lattice physics calculations.