ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Senate committee hears from energy secretary nominee Chris Wright
Wright
Chris Wright, president-elect Trump’s pick to lead the U.S. Department of Energy, spent hours today fielding questions from members of the U.S. Senate’s committee on Energy and Natural Resources.
During the hearing, Wright—who’s spent most of his career in fossil fuels—made comments in support of nuclear energy and efforts to expand domestic generation in the near future. Asked what actions he would take as energy secretary to improve the development and deployment of SMRs, Wright said: “It’s a big challenge, and I’m new to government, so I can’t list off the five levers I can pull. But (I’ve been in discussions) about how to make it easier to research, to invest, to build things. The DOE has land at some of its facilities that can be helpful in this regard.”
M. Srinivasan, K. Subba Rao, S. B. Garg, G. V. Acharya
Nuclear Science and Engineering | Volume 102 | Number 3 | July 1989 | Pages 295-309
Technical Paper | doi.org/10.13182/NSE89-A27479
Articles are hosted by Taylor and Francis Online.
A number of interesting systematics and correlations have been deduced by analyzing the criticality data of special actinide nuclides using concepts embodied in the Trombay criticality formula (TCF). The k∞ of fast metal actinide nuclides gives a remarkable linear correlation with the fissility parameter Z2/A. The neutron leakage probability of all fast metal cores characterized using a constant parameter σstd enables computation of the critical mass value of any unknown fissile nuclide knowing only its Z2/A value. Since the neutron leakage probability from dilute fissile solutions is primarily governed by the scattering/slowing down properties of the hydrogen present in water, critical masses and subcritical limits can be predicted for any water-reflected system at any specified hydrogen-to-actinide atomic ratio knowing only the k∞ value of the given fissile solution. In the case of fast fissible actinide systems, the neutron leakage probability can be characterized by a single parameter σstd, but having a slightly different value from that of fast fissile systems. Due to their fission thresholds, however, attempts to deduce any systematics in their k∞ values have not been very successful. The importance of compiling not only critical radius/mass data but also k∞, the critical surface mass density , the degree of reflection parameter Y, etc., has been clarified while preparing criticality data tabulations for ready reference. These quantities can be used along with the TCF to compute core dimensions and fissile inventories required to yield any specified safe subcritical keff value.