ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
A webinar, and a new opportunity to take ANS’s CNP Exam
Applications are now open for the fall 2025 testing period for the American Nuclear Society’s Certified Nuclear Professional (CNP) exam. Applications are being accepted through October 14, and only three testing sessions are offered per year, so it is important to apply soon. The test will be administered from November 12 through December 16. To check eligibility and schedule your exam, click here.
In addition, taking place tomorrow (September 19) from 12:00 noon to 1:00 p.m. (CDT), ANS will host a new webinar, “How to Become a Certified Nuclear Professional.” More information is available below in this article.
Tarcisio Passos Ribeiro de Campos, Aquilino Senra Martinez
Nuclear Science and Engineering | Volume 102 | Number 3 | July 1989 | Pages 211-218
Technical Paper | doi.org/10.13182/NSE89-A27475
Articles are hosted by Taylor and Francis Online.
A new method is proposed for the analytical calculation of resonance integrals. Resonance integrals of infinite cylindric fuel cells are calculated according to a very simple analytical method with a reasonable level of accuracy. An escape probability based on a rational approximation is used to represent the neutron transport among the cell regions. The expression obtained for the resonance integral is a function of the temperature, geometry, and fuel rod composition, as well as the neutron energy. The terms of the expression are combinations of the well-known function J(ξ,β) and its partial derivatives in β. The formulation can be used for all resonance types (narrow, intermediate, and wide). The method parameters depend on the resonance type and can be obtained as a function of a single parameter. For this parameter, a simple expression dependent on the resonance parameters is proposed.