ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
NRC begins special inspection at Hope Creek
The Nuclear Regulatory Commission is conducting a special inspection at Hope Creek nuclear plant in New Jersey to investigate the cause of repeated inoperability of one of the plant’s emergency diesel generators, the agency announced in a February 25 news release.
K. H. Böckhoff, A. D. Carlson, O. A. Wasson, J. A. Harvey, D. C. Larson
Nuclear Science and Engineering | Volume 106 | Number 2 | October 1990 | Pages 192-207
Technical Paper | doi.org/10.13182/NSE90-A27470
Articles are hosted by Taylor and Francis Online.
Continuing improvements in electron linear accelerators, and associated targets, detectors, and data acquisition systems, make facilities based on these neutron sources very productive in meeting nuclear data needs for fusion energy development. The operation of an electron linear accelerator is briefly outlined, and specific information about neutron-producing targets, available detector systems, and data acquisition capabilities for several of the most productive facilities is given. Data needs are reviewed in terms of reactions important to the fusion energy program, and several examples are given of data acquired at these facilities for these reactions. Much of the experimental data upon which nuclear data evaluations are based are measured at electron linacs, and they continue to be a valuable source of nuclear data for fusion reactor design.