ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
PR: American Nuclear Society welcomes Senate confirmation of Ted Garrish as the DOE’s nuclear energy secretary
Washington, D.C. — The American Nuclear Society (ANS) applauds the U.S. Senate's confirmation of Theodore “Ted” Garrish as Assistant Secretary for Nuclear Energy at the U.S. Department of Energy (DOE).
“On behalf of over 11,000 professionals in the fields of nuclear science and technology, the American Nuclear Society congratulates Mr. Garrish on being confirmed by the Senate to once again lead the DOE Office of Nuclear Energy,” said ANS President H.M. "Hash" Hashemian.
K. H. Böckhoff, A. D. Carlson, O. A. Wasson, J. A. Harvey, D. C. Larson
Nuclear Science and Engineering | Volume 106 | Number 2 | October 1990 | Pages 192-207
Technical Paper | doi.org/10.13182/NSE90-A27470
Articles are hosted by Taylor and Francis Online.
Continuing improvements in electron linear accelerators, and associated targets, detectors, and data acquisition systems, make facilities based on these neutron sources very productive in meeting nuclear data needs for fusion energy development. The operation of an electron linear accelerator is briefly outlined, and specific information about neutron-producing targets, available detector systems, and data acquisition capabilities for several of the most productive facilities is given. Data needs are reviewed in terms of reactions important to the fusion energy program, and several examples are given of data acquired at these facilities for these reactions. Much of the experimental data upon which nuclear data evaluations are based are measured at electron linacs, and they continue to be a valuable source of nuclear data for fusion reactor design.