ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
NRC begins special inspection at Hope Creek
The Nuclear Regulatory Commission is conducting a special inspection at Hope Creek nuclear plant in New Jersey to investigate the cause of repeated inoperability of one of the plant’s emergency diesel generators, the agency announced in a February 25 news release.
G. L. Varsamis, G. P. Lawrence, T. S. Bhatia, B. Blind, F. W. Guy, R. A. Krakowski, G. H. Neuschaefer, N. M. Schnurr, S. O. Schriber, T. P. Wangler, M. T. Wilson
Nuclear Science and Engineering | Volume 106 | Number 2 | October 1990 | Pages 160-182
Technical Paper | doi.org/10.13182/NSE90-A27468
Articles are hosted by Taylor and Francis Online.
Advances in high-current linear accelerator technology since the design of the Fusion Materials Irradiation Test facility have increased the attractiveness of a deuterium-lithium neutron source for fusion materials and technology testing. The conceptual design of such a source, which is aimed at meeting the near-term requirements of the high-flux high-energy International Fusion Materials Irradiation Facility, is discussed. The concept employs multiple accelerator modules providing deu-teron beams to two liquid-lithium jet targets oriented at right angles. This beam/target geometry provides much larger test volumes than can be attained with a single beam and target and produces significant regions of low neutron flux gradient. A preliminary beam dynamics design has been obtained for a 250-mA reference accelerator module. Neutron flux levels and irradiation volumes were calculated for a neutron source incorporating two such modules, and interaction of the beam with the lithium jet was studied using a thermal-hydraulic computer simulation. Approximate cost estimates are provided for a range of beam currents, and a possible facility staging sequence is suggested.