ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
DOE on track to deliver high-burnup SNF to Idaho by 2027
The Department of Energy said it anticipated delivering a research cask of high-burnup spent nuclear fuel from Dominion Energy’s North Anna nuclear power plant in Virginia to Idaho National Laboratory by fall 2027. The planned shipment is part of the High Burnup Dry Storage Research Project being conducted by the DOE with the Electric Power Research Institute.
As preparations continue, the DOE said it is working closely with federal agencies as well as tribal and state governments along potential transportation routes to ensure safety, transparency, and readiness every step of the way.
Watch the DOE’s latest video outlining the project here.
T. Kammash, D. L. Galbraith
Nuclear Science and Engineering | Volume 106 | Number 2 | October 1990 | Pages 156-159
Technical Paper | doi.org/10.13182/NSE90-A27467
Articles are hosted by Taylor and Francis Online.
A recently proposed, novel approach to inertial confinement fusion is examined as a potential source of fast neutrons. Known as the magnetically insulated inertial confinement fusion (MICF) system, it combines the favorable aspects of both magnetic and inertial fusions into one. In this approach, the hot fusion plasma is created inside a hollow spherical pellet whose inner walls are coated with deuterium-tritium fuel and ablated by a laser that enters the target through a hole. Physical containment of the plasma is provided by the metallic shell that surrounds the fuel, while its thermal energy is insulated from the wall by a strong, self-generated magnetic field. In contrast to implosion-type inertial fusion systems, the lifetime of the hot plasma in MICF is dictated by the shock speed in the shell, rather than by the sound speed in the plasma; as a result, it is about two orders of magnitude longer. This translates into a significantly higher Q (ratio of fusion energy to input energy) values at modest input laser energies, which in turn means it can serve as an effective source of high energy neutrons.