ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
What’s the most difficult question you’ve been asked as a maintenance instructor?
Blye Widmar
"Where are the prints?!"
This was the final question in an onslaught of verbal feedback, comments, and critiques I received from my students back in 2019. I had two years of instructor experience and was teaching a class that had been meticulously rehearsed in preparation for an accreditation visit. I knew the training material well and transferred that knowledge effectively enough for all the students to pass the class. As we wrapped up, I asked the students how they felt about my first big system-level class, and they did not hold back.
“Why was the exam from memory when we don’t work from memory in the plant?” “Why didn’t we refer to the vendor documents?” “Why didn’t we practice more on the mock-up?” And so on.
C. O. Slater, F. J. Muckenthaler, D. T. Ingersoll
Nuclear Science and Engineering | Volume 97 | Number 2 | October 1987 | Pages 123-144
Technical Paper | doi.org/10.13182/NSE87-A27460
Articles are hosted by Taylor and Francis Online.
The analysis of an Oak Ridge National Laboratory Tower Shielding Facility (TSF) experiment in which measurements were made of neutrons streaming through a mockup of a section of the lower core support structure of a large-scale high-temperature gas-cooled reactor (HTGR) design concept is described. The analysis was performed with the same calculational methods used for an analysis of the HTGR design itself, the purpose of the experiment being to provide data against which the validity of the calculational methods could be tested. Also summarized are the HTGR design calculation results; how they affected the design and objectives of the TSF experiment is described. Comparisons of the neutron detector responses observed in the experiment with calculated responses showed satisfactory agreement in most cases, and the implications of these results for the HTGR shield design are highlighted. Among other conclusions, it was determined that 1. the calculational methods are adequate 2. neutron streaming through the HTGR core support structure is predicted reasonably well 3. thermal neutron fluence levels at the HTGR lower plenum side wall are probably overestimated by at most a factor of 2.3.