ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Senate committee hears from energy secretary nominee Chris Wright
Wright
Chris Wright, president-elect Trump’s pick to lead the U.S. Department of Energy, spent hours today fielding questions from members of the U.S. Senate’s committee on Energy and Natural Resources.
During the hearing, Wright—who’s spent most of his career in fossil fuels—made comments in support of nuclear energy and efforts to expand domestic generation in the near future. Asked what actions he would take as energy secretary to improve the development and deployment of SMRs, Wright said: “It’s a big challenge, and I’m new to government, so I can’t list off the five levers I can pull. But (I’ve been in discussions) about how to make it easier to research, to invest, to build things. The DOE has land at some of its facilities that can be helpful in this regard.”
S. Brandes, H. Daoud, U. Schmid, V. Drüke
Nuclear Science and Engineering | Volume 97 | Number 2 | October 1987 | Pages 89-95
Technical Paper | doi.org/10.13182/NSE87-A27457
Articles are hosted by Taylor and Francis Online.
The pebble-bed prototype thorium high-temperature reactor represents the second step of high-temperature gas-cooled reactor development in the Federal Republic of Germany. Nuclear commissioning of the plant began in August 1983 with the loading of the spherical elements, and first criti-cality was achieved in September 1983 with the loading of 198 180 spherical elements. A very good agreement of 0.004Δk was achieved between measured and calculated values. After full loading of the core with 674200 elements in October 1983, core physics tests were performed in air and nitrogen in August 1984 to verify the design calculations. In these tests the temperature coefficient, the control rod worths, and the reactivity of the reactor core were measured. The measured values of the temperature coefficient were within 10% of the expected values. The agreement between measured and expected control rod worths (5%) is excellent. The reactivity of the cold core with all rods withdrawn was determined to be 0.112 ± 0.005Δp. Taking into account values of the packing density of the spherical elements, which were higher than expected, the calculated value of 0.11Δp was in very good agreement.