ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
Researchers use one-of-a-kind expertise and capabilities to test fuels of tomorrow
At the Idaho National Laboratory Hot Fuel Examination Facility, containment box operator Jake Maupin moves a manipulator arm into position around a pencil-thin nuclear fuel rod. He is preparing for a procedure that he and his colleagues have practiced repeatedly in anticipation of this moment in the hot cell.
G. C. Pomraning
Nuclear Science and Engineering | Volume 85 | Number 2 | October 1983 | Pages 116-126
Technical Paper | doi.org/10.13182/NSE83-A27419
Articles are hosted by Taylor and Francis Online.
A recently reported description of radiative transfer is generalized to the case of a linear transport equation containing a Fokker-Planck treatment of very peaked scattering. The resulting diffusion theory is naturally flux (current) limited; i.e., the magnitude of the current cannot exceed the scalar flux. It is shown that the effect of the Fokker-Planck terms is, within this theory, identical to treating the very peaked scattering via the classical transport correction to the scattering cross section. This description of linear transport has potential application in charged-particle and high-energy neutron transport calculations.