ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
When your test capsule is the test: ORNL’s 3D-printed rabbit
Oak Ridge National Laboratory has, for the first time, designed, printed, and irradiated a specimen capsule—or rabbit capsule—for use in its High Flux Isotope Reactor (HFIR), the Department of Energy announced on January 15.
W. E. Loewe, W. A. Turin, C. W. Pollock, A. C. Springer, B. L. Richardson
Nuclear Science and Engineering | Volume 85 | Number 2 | October 1983 | Pages 87-115
Technical Paper | doi.org/10.13182/NSE83-A27418
Articles are hosted by Taylor and Francis Online.
The results of a program are reported whose objective has been to establish the reliability and accuracy of tissue kerma estimates near the ground, out to deep penetration ranges, from a point neutron source in an air-over-ground geometry. The results take the form of expected error in calculated neutron and secondary gamma-ray kerma out to 2-km range for any neutron source height and energy spectrum. In the first of two approaches, experimental data permitting absolute evaluation in one dimension is used in conjunction with an evaluated calculational procedure for two dimensions to obtain overall error estimates. In the second approach, errors obtained from comparisons of measurement and calculation in air-over-ground geometry are evaluated to obtain overall error estimates. When the results of these two approaches are averaged, it can be concluded with confidence that kerma to 2 km will probably be calculated to be 10 to 15% lower than measured values for neutrons and 20 to 25% lower for gamma rays when this cross-section set and recommended calculational procedure or equivalents are used.