ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Wyoming OKs construction of TerraPower’s Natrium plant
Progress continues for TerraPower’s Natrium plant, with the latest win coming in the form of a state permit for construction of nonnuclear portions of the advanced reactor.
Donald R. Olander, Albert J. Machiels, Eugen Muchowski
Nuclear Science and Engineering | Volume 79 | Number 2 | October 1981 | Pages 212-227
Technical Paper | doi.org/10.13182/NSE81-A27410
Articles are hosted by Taylor and Francis Online.
Natural salt deposits contain small brine inclusions that can be set into motion by a temperature gradient arising from storage of nuclear wastes in the salt. Inclusions totally filled with liquid move up the temperature gradient, but cavities that are filled partly with liquid and partly by an insoluble gas move in the opposite direction. The velocities of these gas-liquid inclusions are calculated from a model that includes heat transport in the gas-liquid-solid composite medium, vapor transport of water in the gas bubble, and molecular and thermal diffusion of salt in the liquid phase as the principal mechanisms causing cavity motion. An analytical expression for the inclusion velocity is obtainable by approximating the cubical cavity in the solid as a spherical hole containing a central gas bubble and an annular shell of liquid. The theory predicts a change in the migration direction at a critical volume fraction gas in the cavity. For NaCl, the theory gives the velocities of migration down the temperature gradient which are in satisfactory agreement with experimental data.