ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Young Members Group
The Young Members Group works to encourage and enable all young professional members to be actively involved in the efforts and endeavors of the Society at all levels (Professional Divisions, ANS Governance, Local Sections, etc.) as they transition from the role of a student to the role of a professional. It sponsors non-technical workshops and meetings that provide professional development and networking opportunities for young professionals, collaborates with other Divisions and Groups in developing technical and non-technical content for topical and national meetings, encourages its members to participate in the activities of the Groups and Divisions that are closely related to their professional interests as well as in their local sections, introduces young members to the rules and governance structure of the Society, and nominates young professionals for awards and leadership opportunities available to members.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Biden executive order to facilitate AI data center power
As demand for artificial intelligence and data centers grows, President Biden issued an executive order yesterday aimed to ensure clean-energy power supply for the technology.
D. J. Sherwood, C. L. Crawford, T. L. White, C. E. Duffey, T. B. Calloway
Nuclear Science and Engineering | Volume 158 | Number 1 | January 2008 | Pages 88-96
Technical Note | doi.org/10.13182/NSE08-A2741
Articles are hosted by Taylor and Francis Online.
Ventilation and mixing systems in the Hanford Waste Treatment and Immobilization Plant (WTP) are being designed to account for the flammable gas hydrogen that will form in process streams, just as it also does in the radioactive liquid wastes awaiting immobilization at the Hanford Tank Farms. Tank wastes forming hydrogen at the highest rates do so by reactions involving dissolved organic complexant compounds, even though hydrogen is also formed by the better known radiolysis pathway. Hydrogen generation rates (HGRs) are predicted with a correlation relating waste properties to reaction pathways involving radiolysis of water and the degradation of organic compounds. This correlation accounts only for aqueous phase reactions. An antifoam agent (AFA) will be added to waste processed in the WTP. This organic liquid mixture is immiscible in aqueous systems and will therefore form a nonaqueous phase liquid layer on the processed waste, unless some of its compounds are unstable in the hostile physical/chemical environment and break down into soluble degradation products. Dissolved organic species increase the organic source term in the WTP HGR correlation, but the correlation requires adaptation to address hydrogen formed from immiscible organic liquids. Here, we report our initial evaluation of the hydrogen formed by 60Co gamma irradiation of a waste simulant containing Dow Corning Q2-3183A AFA with an adapted WTP HGR correlation.