ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Three nations, three ways to recycle plastic waste with nuclear technology
Plastic waste pollutes oceans, streams, and bloodstreams. Nations in Asia and the Pacific are working with the International Atomic Energy Agency through the Nuclear Technology for Controlling Plastic Pollution (NUTEC Plastics) initiative to tackle the problem. Launched in 2020, NUTEC Plastics is focused on using nuclear technology to both track the flow of microplastics and improve upstream plastic recycling before discarded plastic can enter the ecosystem. Irradiation could target hard-to-recycle plastics and the development of bio-based plastics, offering sustainable alternatives to conventional plastic products and building a “circular economy” for plastics, according to the IAEA.
R. D. Lawrence, J. J. Dorning
Nuclear Science and Engineering | Volume 64 | Number 2 | October 1977 | Pages 492-507
Technical Paper | doi.org/10.13182/NSE77-A27385
Articles are hosted by Taylor and Francis Online.
A smoothing and extrapolation method is applied to the point kinetics equations and the one-dimensional space-dependent reactor kinetics equations. The simple smoothing procedure is shown to be very efficient in reducing the oscillatory errors that occur when the standard Padé(1,1) and Crank-Nicholson approximations are applied to stiff reactor kinetics equations. Fourth-order accuracy is achieved by applying a single Richardson extrapolation (on a global basis) to the smoothed results obtained from values calculated using two time-step grids. The numerical results for point kinetics demonstrate that the method is particularly efficient for very stiff problems such as subcritical and delayed supercritical transients in fast reactors. Application of the method to two one-dimensional kinetics benchmark problems solved using a standard space-dependent computer code that utilizes the Crank-Nicholson approximation leads to significant reduction in the overall computational effort required to achieve a given accuracy.