ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
A wave of new U.S.-U.K. deals ahead of Trump’s state visit
President Trump will arrive in the United Kingdom this week for a state visit that promises to include the usual pomp and ceremony alongside the signing of a landmark new agreement on U.S.-U.K. nuclear collaboration.
A. K. Agrawal, J. G. Guppy, I. K. Madni, V. Quan, W. L. Weaver III, J. W. Yang
Nuclear Science and Engineering | Volume 64 | Number 2 | October 1977 | Pages 480-491
Technical Paper | doi.org/10.13182/NSE77-A27384
Articles are hosted by Taylor and Francis Online.
The transient simulation of a liquid-metal fast breeder reactor (LMFBR) plant requires (a) modeling of all processes that may be encountered and (b) the development of numerical methods to solve them. All models needed for the thermohydraulic simulation of the whole plant are formulated in this paper. We examine numerical techniques required to solve the governing equations, which are hyperbolic and parabolic partial-differential equations and ordinary differential equations. It appears that the implicit (or partially implicit) scheme is most suitable to meet both the stability and accuracy requirements. A new approach, labeled as the multistep scheme, to efficiently solve the entire system is then presented and illustrated through an example. For a simplified test problem, the multistep scheme has been found to be more efficient (by a factor of 2 to 3) than the commonly used single-step methods. This effort has resulted in the creation of a system transient simulation code, called SSC, for LMFBRs.