ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
April 2025
Latest News
Nuclear News 40 Under 40 discuss the future of nuclear
Seven members of the inaugural Nuclear News 40 Under 40 came together on March 4 to discuss the current state of nuclear energy and what the future might hold for science, industry, and the public in terms of nuclear development.
To hear more insights from this talented group of young professionals, watch the “40 Under 40 Roundtable: Perspectives from Nuclear’s Rising Stars” on the ANS website.
Richard M. Roberds, Charles J. Bridgman
Nuclear Science and Engineering | Volume 64 | Number 2 | October 1977 | Pages 332-343
Technical Paper | doi.org/10.13182/NSE77-A27374
Articles are hosted by Taylor and Francis Online.
A space-angle synthesis (SAS) method is developed for the steady-state, two-dimensional transport of neutrons and secondary gamma rays from a point source of simulated nuclear-weapon radiation in air. The method is validated by applying it to the problem of neutron transport from a point source in air over a ground interface, and then comparing the results to those obtained by DOT, a discrete-ordinates code. In the method, the energy dependence of the Boltzmann transport equation is treated in the standard multigroup manner. The angular dependence is treated by expanding the flux in specially tailored trial functions and applying the method of weighted residuals that analytically integrates the transport equation over all angles. The trial functions used in the expansion are composed of combinations of selected trial solutions, the trial solutions being shaped ellipsoids that approximate the angular distribution of the neutron flux in one-dimensional space. Differences between DOT and SAS tissue-dose calculations at distances >60 m from the source were generally under 10% and decreased with increasing source or receiver height. Computer computational time was decreased by a factor of ∼7.