ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Three nations, three ways to recycle plastic waste with nuclear technology
Plastic waste pollutes oceans, streams, and bloodstreams. Nations in Asia and the Pacific are working with the International Atomic Energy Agency through the Nuclear Technology for Controlling Plastic Pollution (NUTEC Plastics) initiative to tackle the problem. Launched in 2020, NUTEC Plastics is focused on using nuclear technology to both track the flow of microplastics and improve upstream plastic recycling before discarded plastic can enter the ecosystem. Irradiation could target hard-to-recycle plastics and the development of bio-based plastics, offering sustainable alternatives to conventional plastic products and building a “circular economy” for plastics, according to the IAEA.
Richard M. Roberds, Charles J. Bridgman
Nuclear Science and Engineering | Volume 64 | Number 2 | October 1977 | Pages 332-343
Technical Paper | doi.org/10.13182/NSE77-A27374
Articles are hosted by Taylor and Francis Online.
A space-angle synthesis (SAS) method is developed for the steady-state, two-dimensional transport of neutrons and secondary gamma rays from a point source of simulated nuclear-weapon radiation in air. The method is validated by applying it to the problem of neutron transport from a point source in air over a ground interface, and then comparing the results to those obtained by DOT, a discrete-ordinates code. In the method, the energy dependence of the Boltzmann transport equation is treated in the standard multigroup manner. The angular dependence is treated by expanding the flux in specially tailored trial functions and applying the method of weighted residuals that analytically integrates the transport equation over all angles. The trial functions used in the expansion are composed of combinations of selected trial solutions, the trial solutions being shaped ellipsoids that approximate the angular distribution of the neutron flux in one-dimensional space. Differences between DOT and SAS tissue-dose calculations at distances >60 m from the source were generally under 10% and decreased with increasing source or receiver height. Computer computational time was decreased by a factor of ∼7.