ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Three nations, three ways to recycle plastic waste with nuclear technology
Plastic waste pollutes oceans, streams, and bloodstreams. Nations in Asia and the Pacific are working with the International Atomic Energy Agency through the Nuclear Technology for Controlling Plastic Pollution (NUTEC Plastics) initiative to tackle the problem. Launched in 2020, NUTEC Plastics is focused on using nuclear technology to both track the flow of microplastics and improve upstream plastic recycling before discarded plastic can enter the ecosystem. Irradiation could target hard-to-recycle plastics and the development of bio-based plastics, offering sustainable alternatives to conventional plastic products and building a “circular economy” for plastics, according to the IAEA.
K. V. N. Sarma, K. Narasimha Murty, V. V. V. Subrahmanyam
Nuclear Science and Engineering | Volume 61 | Number 2 | October 1976 | Pages 195-200
Technical Paper | doi.org/10.13182/NSE76-A27352
Articles are hosted by Taylor and Francis Online.
The external bremsstrahlung (EB) spectra generated by the complete absorption of 91Y and 204Tl beta rays in aluminum, copper, tin, and lead are experimentally measured with a multi-channel NaI(Tl) scintillation spectrometer along with a suitable geometrical arrangement. After being corrected for different possible factors, the measured EB distributions are compared with the modified Bethe-Heitler theory. It is observed that except in the case of very light elements, like aluminum, where there is an exact coincidence between theory and experiment, in general, the experimental values are greater than the theoretical ones. This difference increases with increasing photon energy and also with increasing atomic number of the target element, an observation found to compare favorably with most of the earlier findings.