ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
Trine-Yie Dawn, Chio-Min Yang
Nuclear Science and Engineering | Volume 61 | Number 2 | October 1976 | Pages 142-158
Technical Paper | doi.org/10.13182/NSE76-A27348
Articles are hosted by Taylor and Francis Online.
The problem of finding the exact analytic closed-form solution for the neutron slowing down equation in an infinite homogeneous medium is studied in some detail. First we consider the existence and unique properties of the solution of this equation for both the time-dependent and the time-independent cases. A direct method is used to determine the solution of the stationary problem. The final result is given in terms of a sum of indefinite multiple integrals by which solutions of some special cases and the Placzek-type oscillation are examined. The same method can be applied to the time-dependent problem with the aid of the Laplace transformation technique, but the inverse transform is, in general, laborious. However, the solutions of two special cases—(a) where the scattering and absorption cross sections both vary as 1/υ and (b) where the scattering cross section is assumed to depend on lethargy, u, in the form Σs(u)υ(u) = (Σsυ)0 exp(-κu) (κ > 0) and a 1/υ absorption cross section—are obtained explicitly. We also compare our results with previously reported works in a variety of cases. The time moments for the positive integral n are evaluated, and the conditions for the existence of the negative moments are discussed.