ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
Rene Sanchez, David Loaiza, Robert Kimpland, David Hayes, Charlene Cappiello, Mark Chadwick
Nuclear Science and Engineering | Volume 158 | Number 1 | January 2008 | Pages 1-14
Technical Paper | doi.org/10.13182/NSE08-A2734
Articles are hosted by Taylor and Francis Online.
A series of critical-mass experiments using a 6-kg neptunium sphere was performed on the Planet vertical-assembly machine at Los Alamos National Laboratory (LANL). The purpose of the experiments was to obtain a better estimate of the critical mass of 237Np. The configurations that were studied included surrounding the neptunium sphere with highly enriched uranium (HEU) shells as well as reflecting it with iron and polyethylene. An additional experiment using a 4.5-kg -phase plutonium sphere surrounded with HEU was performed to demonstrate how well the computer transport code and the existing cross-section data for uranium and plutonium could reproduce the experiment. For some of the configurations, the prompt-neutron decay constants at delayed critical were measured. These experiments provided an integral measurement of the cross sections for 237Np in the fast-energy and possibly in the intermediate-energy regions. The measured keff from these experiments was compared with the calculated keff from the Monte Carlo N-Particle (MCNP) transport code using ENDF/B-V and ENDF/B-VI and cross-section data evaluated by the Nuclear Theory and Applications group (T-16) at LANL. In all the neptunium experiments, the calculated keff values based on ENDF/B-VI data were ~1% lower than the experimental keff. After adjusting the cross sections for neptunium and 235U to match the bare neptunium/HEU experiment as well as Godiva keff criticality and spectra indexes, the MCNP code yielded a value of 57 ± 4 kg for the bare critical mass of 237Np.