ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
April 2025
Latest News
Penn State and Westinghouse make eVinci microreactor plan official
Penn State and Westinghouse Electric Company are working together to site a new research reactor on Penn State’s University Park, Pa., campus: Westinghouse’s eVinci, a HALEU TRISO-fueled sodium heat-pipe reactor. Penn State has announced that it submitted a letter of intent to host and operate an eVinci reactor to the Nuclear Regulatory Commission on February 28 and plans to engage with the NRC on specific siting decisions. Penn State already boasts the Breazeale reactor, which began operating in 1955 as the first licensed research reactor at a university in the United States. At 70, the Breazeale reactor is still in operation.
D. E. Wood
Nuclear Science and Engineering | Volume 5 | Number 1 | January 1959 | Pages 45-48
Technical Paper | doi.org/10.13182/NSE59-A27328
Articles are hosted by Taylor and Francis Online.
Neutron leakage through a reactor shield composed primarily of iron is discussed. This is of interest whenever the hydrogen content of a shield is reduced either by design requirements or thermal deterioration. Work done at several sites on individual aspects of the problem is combined to present an over-all description of the neutron streaming. In general there are two different phenomena involved, each determined by the geometry. In the case of a long thin streaming path, such as a structural member penetrating the shield, the leakage consists of neutrons which have suffered no collisions. These neutrons will have energies corresponding to energies at which the iron total cross section is small. Iron has several antiresonances in the interval 25 to 100 kev, with the largest dip apparently at 25 kev, so most of the neutron leakage will be at these energies. The other case involves the attenuation of neutrons by large slabs of iron with little or no hydrogen (or other good moderator) present. The 25 kev neutrons are still present, but they are augmented by a large number of neutrons of energy between thermal and 1 Mev. These neutrons may have collided elastically many times but with only a small energy loss each time. Above 1 Mev, inelastic scattering suppresses the leakage, and below a few volts, absorption removes the neutrons.