ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
A series of firsts delivers new Plant Vogtle units
Southern Nuclear was first when no one wanted to be.
The nuclear subsidiary of the century-old utility Southern Company, based in Atlanta, Ga., joined a pack of nuclear companies in the early 2000s—during what was then dubbed a “nuclear renaissance”—bullish on plans for new large nuclear facilities and adding thousands of new carbon-free megawatts to the grid.
In 2008, Southern Nuclear applied for a combined construction and operating license (COL), positioning the company to receive the first such license from the U.S. Nuclear Regulatory Commission in 2012. Also in 2008, Southern became the first U.S. company to sign an engineering, procurement, and construction contract for a Generation III+ reactor. Southern chose Westinghouse’s AP1000 pressurized water reactor, which was certified by the NRC in December 2011.
Fast forward a dozen years—which saw dozens of setbacks and hundreds of successes—and Southern Nuclear and its stakeholders celebrated the completion of Vogtle Units 3 and 4: the first new commercial nuclear power construction project completed in the U.S. in more than 30 years.
D. E. Wood
Nuclear Science and Engineering | Volume 5 | Number 1 | January 1959 | Pages 45-48
Technical Paper | doi.org/10.13182/NSE59-A27328
Articles are hosted by Taylor and Francis Online.
Neutron leakage through a reactor shield composed primarily of iron is discussed. This is of interest whenever the hydrogen content of a shield is reduced either by design requirements or thermal deterioration. Work done at several sites on individual aspects of the problem is combined to present an over-all description of the neutron streaming. In general there are two different phenomena involved, each determined by the geometry. In the case of a long thin streaming path, such as a structural member penetrating the shield, the leakage consists of neutrons which have suffered no collisions. These neutrons will have energies corresponding to energies at which the iron total cross section is small. Iron has several antiresonances in the interval 25 to 100 kev, with the largest dip apparently at 25 kev, so most of the neutron leakage will be at these energies. The other case involves the attenuation of neutrons by large slabs of iron with little or no hydrogen (or other good moderator) present. The 25 kev neutrons are still present, but they are augmented by a large number of neutrons of energy between thermal and 1 Mev. These neutrons may have collided elastically many times but with only a small energy loss each time. Above 1 Mev, inelastic scattering suppresses the leakage, and below a few volts, absorption removes the neutrons.