ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
NEA panel on AI hosted at World Governments Summit
A panel on the potential of artificial intelligence to accelerate small modular reactors was held at the World Governments Summit (WGS) in February in Dubai, United Arab Emirates. The OECD Nuclear Energy Agency cohosted the event, which attracted leaders from developers, IT companies, regulators, and other experts.
D. A. Niebruegge, E. L. Tolman, C. W. Solbrig
Nuclear Science and Engineering | Volume 68 | Number 3 | December 1978 | Pages 363-368
Technical Note | doi.org/10.13182/NSE78-A27316
Articles are hosted by Taylor and Francis Online.
Thus far, existing computer programs have been adequate to predict the behavior of the loss-of-fluid test facility (LOFT) non-nuclear loss-of-coolant experiments. The work presented here describes a predictive capability for modeling nuclear experiments to determine if the same fuel can be used in several experiments. This is analogous to determining if fuel may be reused after a pressurized water reactor loss-of-coolant accident. We are concerned here with discussing only best-estimate calculations for experimental predictions and not the conservative models used for licensing. It was found that an adequate analysis procedure could be established by modeling accurately the fuel stored energy before the experiment is initiated. The initial stored energy in the fuel was found to be the most important fuel rod parameter influencing the maximum cladding temperature obtained in the transient.