ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
NEA panel on AI hosted at World Governments Summit
A panel on the potential of artificial intelligence to accelerate small modular reactors was held at the World Governments Summit (WGS) in February in Dubai, United Arab Emirates. The OECD Nuclear Energy Agency cohosted the event, which attracted leaders from developers, IT companies, regulators, and other experts.
Fred Cooper, John Dienes
Nuclear Science and Engineering | Volume 68 | Number 3 | December 1978 | Pages 308-321
Technical Paper | doi.org/10.13182/NSE78-A27308
Articles are hosted by Taylor and Francis Online.
We investigate the growth of Rayleigh-Taylor instabilities following the deceleration of fuel by a less dense coolant using the method of generalized coordinates, which allows us to study the nonlinear, late-time aspects of the problem as well as the possibility of fuel freezing at the interface. We consider liquid coolant in contact with three possible states of fuel—pure liquid, pure solid, and liquid fuel freezing at the interface—and treat several acceleration mechanisms. Assuming the instability starts at a planar interface as a velocity perturbation proportional to the interfacial velocity, we find that when the fuel is completely frozen or freezing at the interface, instabilities will not grow unless the initial interfacial relative velocity satisfies a relationship of the form where υ0 is the initial relative velocity, ρf the density of the fuel, Y0 the yield strength of the frozen fuel, λ the wavelength of the instability, and L a characteristic length. The specific form of C depends on the acceleration mechanism and when freezing begins. For the case of UO2 and sodium, we follow the growth of the fastest growing wavelength instability for different acceleration mechanisms and determine the impulse needed for instabilities to grow when freezing is occurring at the interface.