ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Wyoming OKs construction of TerraPower’s Natrium plant
Progress continues for TerraPower’s Natrium plant, with the latest win coming in the form of a state permit for construction of nonnuclear portions of the advanced reactor.
Michael S. Milgram
Nuclear Science and Engineering | Volume 68 | Number 3 | December 1978 | Pages 249-269
Technical Paper | doi.org/10.13182/NSE78-A27304
Articles are hosted by Taylor and Francis Online.
The integral transport equation for the flux density in the interior of an infinite homogeneous cylinder is reduced to a matrix eigenvalue problem for the critical cylinder and a set of linear algebraic equations for the driven case with surface in-currents. The matrix elements are identified as moments of modified Bessel functions and are easily computed. A connection is made with classical diffusion theory via a related matrix eigenvalue problem, from which the diffusion coefficient and extrapolation endpoint can be computed. Analytic properties of the matrix elements are used to obtain approximate solutions for (optically) dense and transparent cylinders. Numerical results are given for the American Nuclear Society benchmark black rod problem, and the fact that only small matrices are required for a large range of problems is demonstrated.