ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Wyoming OKs construction of TerraPower’s Natrium plant
Progress continues for TerraPower’s Natrium plant, with the latest win coming in the form of a state permit for construction of nonnuclear portions of the advanced reactor.
D. Shalitin, J. J. Wagschal, Y. Yeivin
Nuclear Science and Engineering | Volume 68 | Number 3 | December 1978 | Pages 243-248
Technical Paper | doi.org/10.13182/NSE78-A27303
Articles are hosted by Taylor and Francis Online.
Conditions for the reduction of the time-independent neutron transport equation to an energy-independent (one-group) equation are discussed. It is shown that a meaningful reduction is equivalent to angular flux separability into a product of an energy spectrum and a spatial and angular function. It is proven that such a separability in a finite system is possible if and only if the total cross section is energy independent, provided some auxiliary conditions are met. The physical situations in which these conditions are satisfied and the similarity to the so-called first fundamental theorem of reactor theory are discussed.