ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Wyoming OKs construction of TerraPower’s Natrium plant
Progress continues for TerraPower’s Natrium plant, with the latest win coming in the form of a state permit for construction of nonnuclear portions of the advanced reactor.
O. A. Wasson, R. A. Schrack, G. P. Lamaze
Nuclear Science and Engineering | Volume 68 | Number 2 | November 1978 | Pages 170-182
Technical Paper | doi.org/10.13182/NSE78-A27287
Articles are hosted by Taylor and Francis Online.
The common features used in the measurement 6Li(n,α), 10B(n,αγ), and 235U(n,f) cross sections presented in three subsequent papers are described. The experiments were performed on the 200-m flight path of the National Bureau of Standards Linac and cover the neutron energy region from 5 to 800 keV. The neutron flux monitor was a hydrogen-filled gas proportional counter located at the end of the flight path, while the primary detectors specific to each of the three cross-section measurements were placed 70 m along the flight path. The properties of the neutron source, the detailed operation of the flux monitor, the data acquisition system, and the data analysis procedure are described. The systematic errors in the neutron flux measurement are given.