ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
NEA panel on AI hosted at World Governments Summit
A panel on the potential of artificial intelligence to accelerate small modular reactors was held at the World Governments Summit (WGS) in February in Dubai, United Arab Emirates. The OECD Nuclear Energy Agency cohosted the event, which attracted leaders from developers, IT companies, regulators, and other experts.
J. R. Hofmann
Nuclear Science and Engineering | Volume 68 | Number 1 | October 1978 | Pages 73-90
Technical Paper | doi.org/10.13182/NSE78-A27272
Articles are hosted by Taylor and Francis Online.
A model has been developed to describe the transient pressure field within the interconnected porosity of solid mixed-oxide fast reactor fuel during a reactor transient. The pore gas may be composed of up to two distinct chemical species, so that gas released from fuel grains may differ chemically from the fill gas originally present within the porosity of the fuel. The volume expansion of fuel upon melting is accounted for, but mechanical deformation of the solid fuel is not modeled. Results are presented for a hypothetical unprotected transient over-power accident in a gas-cooled fast reactor with ramp rates of 0.10, 1.0, and 10.0 dollar/s. In these calculations, fuel cladding failure is computed from a linear accumulative damage law and a Larson-Miller parameter correlation.