ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
NRC begins special inspection at Hope Creek
The Nuclear Regulatory Commission is conducting a special inspection at Hope Creek nuclear plant in New Jersey to investigate the cause of repeated inoperability of one of the plant’s emergency diesel generators, the agency announced in a February 25 news release.
S. Pearlstein
Nuclear Science and Engineering | Volume 68 | Number 1 | October 1978 | Pages 55-60
Technical Paper | doi.org/10.13182/NSE78-A27270
Articles are hosted by Taylor and Francis Online.
Measured neutron emission spectra from 14-MeV neutron-induced reactions in a wide range of nuclei are analyzed by precompound nuclear model calculations. The nuclear model code parameters are adjusted using a least-squares fitting procedure to optimize the agreement between calculation and experiment, but the parameters are constrained to physically reasonable values. A single set of input nuclear constants produces calculated spectra that agree to within 30% of experimental values in over 70% of the cases.