ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Biden executive order to facilitate AI data center power
As demand for artificial intelligence and data centers grows, President Biden issued an executive order yesterday aimed to ensure clean-energy power supply for the technology.
T. H. Newton, Jr., M. S. Kazimi, E. E. Pilat
Nuclear Science and Engineering | Volume 157 | Number 3 | November 2007 | Pages 264-279
Technical Paper | doi.org/10.13182/NSE07-A2727
Articles are hosted by Taylor and Francis Online.
The Massachusetts Institute of Technology (MIT) Reactor II (MITR-II) is a 5-MW research reactor presently fueled with highly enriched uranium (HEU) in uranium-aluminum plate-type elements. A low-enriched uranium (LEU)-fueled core has been designed using 20% enriched monolithic uranium-molybdenum fuel that maintains high experimental neutron flux and increases flexibility in meeting the needs of experiments. The configuration of the new plate fuel elements was selected using a full-core MCNP model, with which different in-core materials were evaluated to optimize the neutron fluxes, reactivity, and experimental neutron spectrum. In-core materials were chosen to meet experimental flux level and spectrum needs. Of the designs evaluated, the most promising consisted of half-width fuel elements with nine U-7Mo LEU fuel plates.Results from the MCNP/ORIGEN linkage code MCODE depletion calculations showed that the refueling interval of the chosen LEU core would be twice as long as the HEU core at the same power level. Thermal-hydraulic analysis using the MULtiCHannel analysis code II (MULCH-II) indicated that the peak channel will remain below the onset of nucleate boiling under normal and loss-of-flow conditions. A thermal-hydraulic evaluation of the limiting channel using point kinetics showed that the LEU core could withstand a step reactivity insertion of 3.92 $, increasing by 60% the allowable reactivity for an in-core experiment. Finally, preliminary analyses show that it may be feasible to use the proposed design to double the core power, if the fuel cycle length is to be kept at its present length.