ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
Seconds Matter: Rethinking Nuclear Facility Security for the Modern Threat Landscape
In today’s rapidly evolving threat environment, nuclear facilities must prioritize speed and precision in their security responses—because in critical moments, every second counts. An early warning system serves as a vital layer of defense, enabling real-time detection of potential intrusions or anomalies before they escalate into full-blown incidents. By providing immediate alerts and actionable intelligence, these systems empower security personnel to respond decisively, minimizing risk to infrastructure, personnel, and the public. The ability to anticipate and intercept threats at the earliest possible stage not only enhances operational resilience but also reinforces public trust in the safety of nuclear operations. Investing in such proactive technologies is no longer optional—it’s essential for modern nuclear security.
S. Pearlstein
Nuclear Science and Engineering | Volume 68 | Number 1 | October 1978 | Pages 10-18
Technical Paper | doi.org/10.13182/NSE78-A27265
Articles are hosted by Taylor and Francis Online.
The probability table method (PTM), used in unresolved resonance region calculations, assumes that cross sections are not energy correlated. Strong cross-section energy auto-correlations are noted for some heavy nuclides that could affect the use of the PTM in the unresolved resonance region or its extension to the resolved resonance region. Uranium-238 has strong cross-section auto-correlations and is considered a severe test material for the PTM. Monte Carlo calculations of capture rates in 238U at 500, 1000, and 2000 eV do not show differences between the PTM and exact methods within an ∼1% calculational uncertainty. These results show that strong auto-correlations do not interfere with the use of the PTM in the resolved and unresolved resonance regions.