ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Three nations, three ways to recycle plastic waste with nuclear technology
Plastic waste pollutes oceans, streams, and bloodstreams. Nations in Asia and the Pacific are working with the International Atomic Energy Agency through the Nuclear Technology for Controlling Plastic Pollution (NUTEC Plastics) initiative to tackle the problem. Launched in 2020, NUTEC Plastics is focused on using nuclear technology to both track the flow of microplastics and improve upstream plastic recycling before discarded plastic can enter the ecosystem. Irradiation could target hard-to-recycle plastics and the development of bio-based plastics, offering sustainable alternatives to conventional plastic products and building a “circular economy” for plastics, according to the IAEA.
H. I. Liou, R. E. Chrien, R. C. Block, K. Kobayashi
Nuclear Science and Engineering | Volume 67 | Number 3 | September 1978 | Pages 326-333
Technical Paper | doi.org/10.13182/NSE78-A27253
Articles are hosted by Taylor and Francis Online.
The size of the neutron cross-section minimum in 45Sc is important in the optimum design of filters for the production of 2-keV neutron beams. We have measured the scandium total cross section from 5 eV to 22 keV, an energy region in which high-resolution and high-precision cross-section data did not previously exist. The samples used are in metallic form having thicknesses ranging from 0.2 to 30.5 cm. We find that the cross section at the (2.05 ± 0.02)-keV minimum is (0.71 ± 0.03) b, in sharp contrast to the previously accepted value, 0.085 b. The size of the cross section indicates that an optimum scandium filter would be shorter than what is conventionally used. An R-function shape fit with constraints from the known thermal cross sections showed that J = 3 scattering dominates at thermal energy, in contradiction to a previous result obtained by polarization techniques. Our conclusion is supported by 45Sc(n, γ) spectra, and the transmission measurements using polarized neutrons and targets. Scandium level parameters were extracted for each observed resonance up to 22 keV. S-wave strength functions and average level spacings were also evaluated for both spin states.