ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Three nations, three ways to recycle plastic waste with nuclear technology
Plastic waste pollutes oceans, streams, and bloodstreams. Nations in Asia and the Pacific are working with the International Atomic Energy Agency through the Nuclear Technology for Controlling Plastic Pollution (NUTEC Plastics) initiative to tackle the problem. Launched in 2020, NUTEC Plastics is focused on using nuclear technology to both track the flow of microplastics and improve upstream plastic recycling before discarded plastic can enter the ecosystem. Irradiation could target hard-to-recycle plastics and the development of bio-based plastics, offering sustainable alternatives to conventional plastic products and building a “circular economy” for plastics, according to the IAEA.
Iván Lux
Nuclear Science and Engineering | Volume 67 | Number 1 | July 1978 | Pages 107-119
Technical Paper | doi.org/10.13182/NSE78-A27241
Articles are hosted by Taylor and Francis Online.
A unified definition of a wide class of Monte Carlo reaction rate estimators is presented, since most commonly used estimators belong to that class. The definition is given through an integral transformation of an arbitrary estimator of the class. Since the transformation contains an arbitrary function, in principle an infinite number of new estimators can be defined on the basis of one known estimator. It is shown that the most common estimators belonging to the class, such as the track-length and expectation estimators, are special cases of transformation, corresponding to the simplest transformation kernels when transforming the usual collision estimator. A pair of new estimators is defined and their variances are compared to the variance of the expectation estimator. One of the new estimators, called the trexpectation estimator, seems to be appropriate for flux-integral estimation in moderator regions. The other one, which uses an intermediate estimation of the final result and is therefore called the self-improving estimator, always yields a lower variance than the expectation estimator. As is shown, this estimator approximates well to possibly the best estimator of the class. Numerical results are presented for the simplest geometries, and these results indicate that for absorbers that are not too strong, in practical cases the standard deviation of the self-improving estimator is less than that of the expectation estimator by more than 10%. The experiments also suggest that the self-improving estimator is always superior to the track-length estimator as well, i.e., that it is the best of all known estimators belonging to the class. In the Appendices, for simplified cases, approximate conditions are given for which the trexpectation and track-length estimators show a higher efficiency than the expectation estimator.