ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Biden executive order to facilitate AI data center power
As demand for artificial intelligence and data centers grows, President Biden issued an executive order yesterday aimed to ensure clean-energy power supply for the technology.
R. D. M. Garcia
Nuclear Science and Engineering | Volume 157 | Number 2 | October 2007 | Pages 225-235
Technical Note | doi.org/10.13182/NSE07-A2724
Articles are hosted by Taylor and Francis Online.
Special formulas for an efficient computation of first-flight escape and transmission probabilities in X-Y-Z geometry are presented. The approach used to derive these formulas is based on rearranging and grouping similar terms in the general three-dimensional formulas reported in a previous work by the author. When applied to fine grids, the new formulas are found to be orders of magnitude more efficient than the original ones. Numerical results are reported for test cases defined by regular hexahedra of various optical dimensions, including one where partitions are used to define the source and sink zones in the calculations of the escape and transmission probabilities.