ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
Herbert Bachmann, Ulrike Fritscher, Friedbert W. Kappler, Detlef Rusch, Heinrich Werle, Hans W. Wiese
Nuclear Science and Engineering | Volume 67 | Number 1 | July 1978 | Pages 74-84
Technical Paper | doi.org/10.13182/NSE78-A27238
Articles are hosted by Taylor and Francis Online.
Measured and calculated neutron spectra from a sphere of lithium metal with natural isotopic composition are compared. In the calculations, the investigation is concentrated on the SN method with nuclear data from ENDF/B-III for lithium and from KEDAK 3 for iron. A special partition of the angular coordinate, S19, was introduced to allow for the strong anisotropy of the neutron flux in the radial direction. For the proper treatment of the anisotropic elastic scattering, a new technique for improved, extended, and consistent transport approximation up to T5 is used. These ameliorations being introduced, it is shown that the nonelastic scattering is treated inadequately with respect to the angular and energetic distribution of the outcoming neutrons. The investigation is completed by a comparison of the measured and calculated space-dependent tritium production rate, in which the discrepancy is found consistent with the discrepancy in the neutron spectra. Furthermore, we propose that the 7Li(n,n′α) cross section should be reduced by 15 to 20% with respect to the ENDF/B-III value.