ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Young Members Group
The Young Members Group works to encourage and enable all young professional members to be actively involved in the efforts and endeavors of the Society at all levels (Professional Divisions, ANS Governance, Local Sections, etc.) as they transition from the role of a student to the role of a professional. It sponsors non-technical workshops and meetings that provide professional development and networking opportunities for young professionals, collaborates with other Divisions and Groups in developing technical and non-technical content for topical and national meetings, encourages its members to participate in the activities of the Groups and Divisions that are closely related to their professional interests as well as in their local sections, introduces young members to the rules and governance structure of the Society, and nominates young professionals for awards and leadership opportunities available to members.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Three nations, three ways to recycle plastic waste with nuclear technology
Plastic waste pollutes oceans, streams, and bloodstreams. Nations in Asia and the Pacific are working with the International Atomic Energy Agency through the Nuclear Technology for Controlling Plastic Pollution (NUTEC Plastics) initiative to tackle the problem. Launched in 2020, NUTEC Plastics is focused on using nuclear technology to both track the flow of microplastics and improve upstream plastic recycling before discarded plastic can enter the ecosystem. Irradiation could target hard-to-recycle plastics and the development of bio-based plastics, offering sustainable alternatives to conventional plastic products and building a “circular economy” for plastics, according to the IAEA.
Minoru Shinkawa, Yoshihiro Yamane, Kojiro Nishina, Hajime Tamagawa
Nuclear Science and Engineering | Volume 67 | Number 1 | July 1978 | Pages 19-33
Technical Paper | doi.org/10.13182/NSE78-A27234
Articles are hosted by Taylor and Francis Online.
One-dimensional, one-energy-group diffusion theory is applied to a coupled-core slab reactor to derive kinetic equations for the system, with different modes of formulation taken for moderator regions and for core regions. For the former, the diffusion equation is exactly solved to obtain the time-dependent neutron currents from moderator to core (the moderator response function) in response to the neutron incident current in the form of a unit impulse on the boundary. For the core regions, the neutron flux ψ(x,t) is written as a product of a shape function, (x,t), and a time function, P(t), as suggested by Henry, with P(t) chosen to represent the time variation of total importance over the respective core. The boundary terms that arise in the equations for P(t) are combined with incoming neutron currents at the boundaries, which in turn are expressed in terms of the moderator region response functions above. The equations for P(t) derived by such procedures include the coupling effect between the two cores, without a need for the conventional, a priori assumption of coupling coefficient. For the Argonaut two-slab core, the transfer functions are obtained and compared with existing values. The value of the conventional coupling coefficient is also inferred by reducing the present form of coupling terms by approximation. From the approximation needed in the procedure, the limitation of the coupling coefficient approach is discussed.