ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Discovering, Making, and Testing New Materials: SRNL’s Center For Hierarchical Waste Form Materials
Savannah River National Laboratory researchers are building on the laboratory’s legacy of using cutting-edge science to effectively immobilize nuclear waste in innovative ways. As part of the Center for Hierarchical Waste Form Materials, SRNL is leveraging its depth of experience in radiological waste management to explore new frontiers in the industry.
Hideki Kokame, Yoshikazu Nishikawa
Nuclear Science and Engineering | Volume 67 | Number 1 | July 1978 | Pages 8-18
Technical Paper | doi.org/10.13182/NSE78-A27233
Articles are hosted by Taylor and Francis Online.
The problem of rapid detection of an unexpected reactivity insertion into a nuclear reactor is studied assuming a stochastic point reactor model and noisy measurements of neutron density. The fundamental assumption is that the time dependence of the reactivity is given as in a ramp function with unknown coefficients. Thereupon, the present method applies a likelihood ratio test to the innovation sequence obtained by using a discrete Kalman filter, which is designed for the steady-state condition of reactor operation. By numerical experiment, the mean delay time for detection has been obtained under the condition that the mean time between false alarms takes on a prescribed constant. A comparative study with some typical existing methods shows that the proposed method is remarkably effective except for extremely large or small inputs of reactivity.